論文名稱: | 高精密度管型線性馬達應用於定位平台之設計與控制 |
| Design and control for high precision servo-tube actuator in positioning platform |
研究生: | 馬偉恭 Wei-Gong Ma |
指導教授: | 陳美勇 Mei-Yung Chen |
學位類別: | 碩士(Master) |
學校名稱: | 國立臺灣師範大學 |
記錄編號: | GN0698730085 |
系所名稱: | 機電科技研究所 |
畢業學年度: | 99 |
語文別: | 中文 |
關鍵字: | 管型線性馬達 servo linear tubular motor |
| 定位平台 positioning control |
全文說明: | (本論文20130830公開) |
| 電子全文 |
|
論文頁數: | 77 |
摘要: | 本篇論文主要目的是設計並實現高精密且長行程的線性平台;在論文中分別對硬體架構、推力的分析與定位控制做介紹。在管型伺服線性馬作推力分析上,由於不同線性馬達,具有不同的磁力線分布;在導體上當線圈通以電流,會產生磁通量Φ,其中Φ的大小與磁場密度和磁場強度來決定;經由對磁通量對時間做微分一次,求得線性馬達的反電動勢為式子,最後依功能原理推導得到力與電流之間的關係;經由模擬圖可以得知因本身結構,在弦波的峰值會有干擾的產生。這些干擾對定位控制上有極大的影響。 |
| |
| 在線性平台的控制上,主要是使用傳統PID控制器搭配庫倫摩擦力模型與適應滑動模型控制器,做定位控制與分析比較;其中在一些摩擦力與漣波力,我們把他假設為d,根據以上對於伺服管型馬達之動態模式推導與摩擦力模型估測,其控制目標是設計並且控制適當之輸入電流使得系統具有大行程與達成高精密定位準度之性能,亦即使得系統狀態參數快速到達設定位置控制目標。由電腦模擬的結果,可以證實確實能達到良好的控制效果,以達到長行程的運動控制。 |
| |
| The purpose of this paper is to design and achieve a high-precision and long-stroke linear platform. We introduce three parts, about hardware architecture, analysis of the force and positioning control, in this paper. In the analysis of the force generated by the operation of the servo linear tubular motor, because different linear motor has a different distribution of magnetic field lines, when the current through the coil on the conductor , it will generate magnetic flux Φ, whose magnitude is decided by strength and density of the magnetic field. We get the function of the anti-EMF by the time derivative of magnetic flux, and finally we use the Functional principle calculated the relationship between force and current. By simulation figure we can see some disturbances on the peaks of the sine wave, These disturbances will have a profound influence on positioning control. |
| In the controlling of linear platform, we do positioning control and analysis by using mainly based on traditional PID controller with Coulomb friction model and adaptive sliding mode control. We assume that the friction force and ripple as “d” at estimation of the servo linear tubular motor dynamic model and the friction model. Our goal is to establish a control system, when the current passes through the linear platform that can reach a long stroke and high precision positioning performance. We confirmed by computer simulation results, we really can get good control results in order to achieve the purpose of long stroke control. |
| |
論文目次: | 摘要 Ⅰ |
| ABSTRACT Ⅱ |
| 誌 謝 Ⅲ |
| 總目錄 IV |
| 圖目錄 VII |
| 表目錄 IX |
| 第一章 緒論 1 |
| 1.1 前言 1 |
| 1.2 文獻回顧 4 |
| 1.3 研究動機與目的 7 |
| 1.4 本論文之貢獻 8 |
| 1.5 論文架構 8 |
| 第二章 理論基礎 9 |
| 2.1 電磁力原理 9 |
| 2.2 永久磁鐵 13 |
| 2.3 磁路模型分析 19 |
| 2.4 管型線性馬達動作原理 21 |
| 第三章 系統設計概念 24 |
| 3.1 機構系統設計 24 |
| 3.2 線性致動器 24 |
| 3.2.1線性馬達的種類 24 |
| 3.2.2管型線性致動器設計 26 |
| 3.3 量測系統 27 |
| 3.4 定位平台整體架構 28 |
| 第四章 系統模型推導 31 |
| 4.1 管型線性馬達之推力分析 31 |
| 4.2 動態方程式 37 |
| 第五章 控制器設計 39 |
| 5.1 PID控制系統 39 |
| 5.1.1 Ziegler-Nichols 調整演算法 41 |
| 5.1.2 模擬結果 42 |
| 5.2 可控制性與可觀測性 45 |
| 5.3 適應滑動模型控制器 46 |
| 5.3.1 順滑平面 47 |
| 5.3.2 滑動平面控制器形成 48 |
| 5.3.3 適應滑動模型控制器形成 50 |
| 5.3.4 穩定度分析 50 |
| 5.3.5 模擬結果 51 |
| 第六章 實驗結果與討論 54 |
| 6.1 實驗設備 54 |
| 6.1.1 定位平台 54 |
| 6.1.2 控制器介面 56 |
| 6.1.3 感測器 60 |
| 6.2 PID實驗結果 60 |
| 6.2.1 步階響應 60 |
| 6.2.2 弦波響應 62 |
| 6.2.3 方波響應 64 |
| 6.3 適應滑動模型控制器實驗結果 65 |
| 6.2.1 步階響應 65 |
| 6.2.2 弦波響應 67 |
| 6.2.3 方波響應 69 |
| 6.4 平台實際推力 71 |
| 6.5 綜合討論 72 |
| 第七章 結論與未來展望 73 |
| 參考文獻 74 |
參考文獻: | [1] Y. Park, “Precision motion control of a three degrees of freedom hybrid stage with dual actuators”, IET transactions on control theory & applications, Vol. 2, No. 5, pp. 392 - 401, 2008. |
| [2] Profumo,F. Tenconi,A. Gianolio,G. Gigliotti,K.“Design and performance evaluation of a PM linear synchronous motor with magnetic guides for industrial applications” Industry Applications Conference, 1999, Vol. 1,pp. 110-116, 1999. |
| [3] Profumo, F. Tenconi, A. Gianolio, G. “Parameters and forces of a PM linear synchronous motor with magnetic guides for industrial applications: computed and experimental results,” Industry Applications Conference, 2000. Conference Record of the 2000 IEEE, Vol. 1,pp. 15-20, 2000. |
| [4] Khong, P.C. Leidhold, R. Mutschler, P. “Magnetic guidance of the mover in a long-primary linear motor,” Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEE , pp. 2354-2361, 2009 |
| [5] Kay-Soon L. Meng-Teck K. “Advanced precision linear stage for industrial automation applications,” Instrumentation and Measurement, IEEE Transactions on.,Vol. 42, pp.785-789, 2003 |
| [6] S. Verma, W.J. Kim, and J. Gu, “Six-axis nanopositioning device with precision magnetic levitation technology,” in IEEE/ASME Trans.on mechatronics, Vo1.9, No 2, 2004. |
| [7] 許景育, “XY 軸機械平台之位置定位控制設計,”Taiwan, R.O.C.,2004. |
| [8] F.J. Shiou, H.F. Hsu, “Development of a 2-axis Closed Loop Micro-/Nano- Positioning Stage Embedded with 2 Fiber Optical Interferometer Systems,”Taiwan, R.O.C.,2008. |
| [9] Runzi Cao, Kay-Soon Low, “A Repetitive Model Predictive Control Approach for Precision Tracking of a Linear Motion System”, IEEE Trans. on industrial electronics, VOL. 56, PP1955-1962, 2009.. |
| [10] Young-Doo Yoon, Eunsoo Jung, Seung-Ki Sul, “Application of a disturbance observer for a relative position control system,” IEEE trans. on industrial electronics, VOL. 46, PP849-856, 2010. |
| [11] PJ. Besl, N.D. McKey, “A method for registration of 3-D shapes,” IEEE Pattern Analysis and Machine Intelligence, pp. 239-256, 1992. |
| [12] Jung-Jae Kim, Young-Man Choi, Dae-Gab Gweon, “A novel mode switching control for fast settling and high precision positioning, ” International conference on ICCAS , PP 1656-1659 , 2007. |
| [13] 蘇于淵, “Position control of a gantry stage,”Taiwan, R.O.C.,2008 |
| [14] C.J. Kempf, S. Kobayashi “ Disturbance observer and feedforward design of a high speed direct drive positioning table,” IEE Tran. On control Syst. Technol., Vol. 6, pp. 264-27, 2006. |
| [15] Daniel C.Chin, “Comparative study of stochastic gradient-free algorithms for system optimization,” The Johns Hopkins university applied physics laboratory. |
| [16] John L. Maryak and Daniel C.Chin, “Global random optimization by simultaneous perturbation stochastic approximation,” The Johns Hopkins university, applied physics laboratory11100 Johns Hopkins road, Laurel Maryland 20723-6099. |
| [17] 陳泓宇, “ Design and Implementation of a Linear Tubular Brushless DC Motor, ”Taiwan ,R.O.C., 2007. |
| [18] 胡凱翔, “ Design and Analysis of A Linear Motor for Reciprocating Compressors, ”Taiwan ,R.O.C., 2007. |
| [19] Jiabin Wang, David Howe, “Design optimization of radially magnetized iron-cored, tubular permanent-magnet machines and drive systems”, IEEE trans. on Magnetics electronics, VOL. 40, pp.3262-3277, 2004. |
| [20] Kou Baoquan, Li Liyi, Zhang Chengming, Makoto Iwasaki, “Analysis and optimization of thrust characteristics of tubular linear electromagnetic launcher for space use”, IEEE trans. on industrial electronics, VOL. 45, PP250-255, 2009. |
| [21] John L. Maryak and Daniel C.Chin, “A conjecture on global optimization using gradient free stochastic approximation,” The Johns Hopkins university, applied physics laboratory11100 Johns Hopkins road, Laurel Maryland |
| [21] J.C. Basilio and S. R. Matos, “Design of PI and PID Controllers withtransient Performance specification,” IEEE Transactions on Education,Vol. 45, no. 4, November 2002. |
| [22] J.C. Basilio and S. R. Matos, “Design of PI and PID Controllers withtransient Performance specification,” IEEE Transactions on Education,Vol. 45, no. 4, November 2002. |
| [23] 李宜達編著,「控制系統設計與模擬」,全華圖書股份有限公司,民國九十八年十月初版 |
| [24] R. Ortega and R. Kelly, “PID self-tuners: Some Theoretical and Practical Aspects,” IEEE Transactions Ind. Electron., Vol. IE-31, pp. 332–338, Nov.1984. |